Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Diagnostics (Basel) ; 13(7)2023 Mar 27.
Article in English | MEDLINE | ID: covidwho-2305077

ABSTRACT

The novel coronavirus (COVID-19), also known as SARS-CoV-2, is a highly contagious respiratory disease that first emerged in Wuhan, China in 2019 and has since become a global pandemic. The virus is spread through respiratory droplets produced when an infected person coughs or sneezes, and it can lead to a range of symptoms, from mild to severe. Some people may not have any symptoms at all and can still spread the virus to others. The best way to prevent the spread of COVID-19 is to practice good hygiene. It is also important to follow the guidelines set by local health authorities, such as physical distancing and quarantine measures. The World Health Organization (WHO), on the other hand, has classified this virus as a pandemic, and as a result, all nations are attempting to exert control and secure all public spaces. The current study aimed to (I) compare the weekly COVID-19 cases between Israel and Greece, (II) compare the monthly COVID-19 mortality cases between Israel and Greece, (III) evaluate and report the influence of the vaccination rate on COVID-19 mortality cases in Israel, and (IV) predict the number of COVID-19 cases in Israel. The advantage of completing these tasks is the minimization of the spread of the virus by deploying different mitigations. To attain our objective, a correlation analysis was carried out, and two distinct artificial intelligence (AI)-based models-specifically, an artificial neural network (ANN) and a classical multiple linear regression (MLR)-were developed for the prediction of COVID-19 cases in Greece and Israel by utilizing related variables as the input variables for the models. For the evaluation of the models, four evaluation metrics (determination coefficient (R2), mean square error (MSE), root mean square error (RMSE), and correlation coefficient (R)) were considered in order to determine the performance of the deployed models. From a variety of perspectives, the corresponding determination coefficient (R2) demonstrated the statistical advantages of MLR over the ANN model by following a linear pattern. The MLR predictive model was both efficient and accurate, with 98% accuracy, while ANN showed 94% accuracy in the effective prediction of COVID-19 cases.

2.
Diagnostics (Basel) ; 12(11)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2115952

ABSTRACT

Antibody tests, widely used as a complementary approach to reverse transcriptase-polymerase chain reaction testing in identifying COVID-19 cases, are used to measure antibodies developed for COVID-19. This study aimed to evaluate the different parameters of the FDA-authorized SARS-CoV-2 IgM antibody tests and to rank them according to their performance levels. In the study, we involved 27 antibody tests, and the analyzes were performed using the fuzzy preference ranking organization method for the enrichment evaluation model, a multi-criteria decision-making model. While criteria such as analytical sensitivity, specificity, positive predictive value, and negative predictive value were evaluated in the study, the ranking was reported by determining the importance levels of the criteria. According to our evaluation, Innovita 2019-nCoV Ab Test (colloidal gold) was at the top of the ranking. While Cellex qSARS-CoV-2 IgG/IgM Rapid Test and Assure COVID-19 IgG/IgM Rapid Tester ranked second and third on the list, the InBios-SCoV 2 Detect Ig M ELISA Rapid Test Kit was determined as the least preferable. The fuzzy preference ranking organization method for enrichment evaluation, which has been applied to many fields, can help decision-makers choose the appropriate antibody test for managing COVID-19 in controlling the global pandemic.

4.
Comput Math Methods Med ; 2020: 9756518, 2020.
Article in English | MEDLINE | ID: covidwho-814273

ABSTRACT

The COVID-19 diagnostic approach is mainly divided into two broad categories, a laboratory-based and chest radiography approach. The last few months have witnessed a rapid increase in the number of studies use artificial intelligence (AI) techniques to diagnose COVID-19 with chest computed tomography (CT). In this study, we review the diagnosis of COVID-19 by using chest CT toward AI. We searched ArXiv, MedRxiv, and Google Scholar using the terms "deep learning", "neural networks", "COVID-19", and "chest CT". At the time of writing (August 24, 2020), there have been nearly 100 studies and 30 studies among them were selected for this review. We categorized the studies based on the classification tasks: COVID-19/normal, COVID-19/non-COVID-19, COVID-19/non-COVID-19 pneumonia, and severity. The sensitivity, specificity, precision, accuracy, area under the curve, and F1 score results were reported as high as 100%, 100%, 99.62, 99.87%, 100%, and 99.5%, respectively. However, the presented results should be carefully compared due to the different degrees of difficulty of different classification tasks.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/diagnostic imaging , Pandemics , Pneumonia, Viral/diagnostic imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/statistics & numerical data , Artificial Intelligence , COVID-19 , COVID-19 Testing , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Deep Learning , Humans , Neural Networks, Computer , Pneumonia/classification , Pneumonia/diagnostic imaging , Pneumonia, Viral/epidemiology , Radiographic Image Interpretation, Computer-Assisted/statistics & numerical data , Radiography, Thoracic/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity
5.
Comput Math Methods Med ; 2020: 1560250, 2020.
Article in English | MEDLINE | ID: covidwho-721219

ABSTRACT

In December 2019, cases of pneumonia were detected in Wuhan, China, which were caused by the highly contagious coronavirus. This study is aimed at comparing the confusion regarding the selection of effective diagnostic methods to make a mutual comparison among existing SARS-CoV-2 diagnostic tests and at determining the most effective one. Based on available published evidence and clinical practice, diagnostic tests of coronavirus disease (COVID-19) were evaluated by multi-criteria decision-making (MCDM) methods, namely, fuzzy preference ranking organization method for enrichment evaluation (fuzzy PROMETHEE) and fuzzy technique for order of preference by similarity to ideal solution (fuzzy TOPSIS). Computerized tomography of chest (chest CT), the detection of viral nucleic acid by polymerase chain reaction, cell culture, CoV-19 antigen detection, CoV-19 antibody IgM, CoV-19 antibody IgG, and chest X-ray were evaluated by linguistic fuzzy scale to compare among the diagnostic tests. This scale consists of selected parameters that possessed different weights which were determined by the experts' opinions of the field. The results of our study with both proposed MCDM methods indicated that the most effective diagnosis method of COVID-19 was chest CT. It is interesting to note that the methods that are consistently used in the diagnosis of viral diseases were ranked in second place for the diagnosis of COVID-19. However, each country should use appropriate diagnostic solutions according to its own resources. Our findings also show which diagnostic systems can be used in combination.


Subject(s)
Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Decision Making , Pneumonia, Viral/diagnosis , Betacoronavirus , COVID-19 , COVID-19 Testing , Fuzzy Logic , Humans , Immunoglobulin G , Models, Statistical , Pandemics , Program Evaluation , Reproducibility of Results , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL